Что представляет собой умная теплица: 6 характеристик

Основные преимущества автоматизированных систем на основе микроконтроллера Arduino

Никто вам не запрещает спаять собственную плату и самому же её запрограммировать с помощью низкоуровневых языков. Однако автоматика на ардуино и готовых микроконтроллерах значительно облегчит весь процесс и сэкономит время. Ведь куда проще купить уже готовый продукт с набором библиотек и приспособить его под свои задачи. А доступная автоматика на ардуино мега 2560 может пригодиться во многих сферах жизни, от голосовых выключателей для умного дома и до электрических щеколд с детектором движения. Главные преимущества, которыми славится именно автоматика ардуино, это:

Низкий порог вхождения. Нет необходимости получать образование инженера, достаточно просмотреть пару обучающих видео и иметь базу в программировании.
Большое количество уже заготовленных библиотек. Ардуино применяется на просторах СНГ многими любителями робототехники, вплоть до того, что производство различной электроники становится их хобби. Соответственно, и в сети пользовательское сообщество крайне активно, размещает большое количество заготовок и готово вам помочь в решении любых проблем. Качество библиотек, из-за низкого порога вхождения, страдает, но никто не запрещает создать свою собственную, достаточно изучить семантику языка С++ или использовать уже готовые трансляторы.
Большое количество периферии

Неважно, необходима вам автоматизация теплицы на ардуино или датчик освещённости, вы найдёте любые модули, вплоть до датчиков звука и распознавателей голоса. Да, часть плат стоит немалых денег, но всегда можно найти дешёвые аналоги, например, модуль wi-fi от сторонних производителей esp8269, стоящий в 10 раз дешевле официального.
Большое количество информации

Любая проблема, с которой вы столкнулись, уже была у кого-то, и вы наверняка найдёте её решение в Гугле. Существует и полноценная литература, с которой можно ознакомиться.

Однако простые автоматизированные системы, например, для варки пива или теплиц, не требуют и части тех ресурсов, что способна выдать плата. Соответственно, большинству пользователей эти недостатки покажутся бессмысленными. Если же вы решите собрать свой 3-Д принтер или более сложную конструкцию, стоит присмотреться к аналогам. Но и порог вхождения у конкурентов Ардуино будет куда выше.

Умная теплица – технология будущего

Схема автоматического проветривания теплицы.

«Умная» теплица имеет полностью автоматизированное управление всех элементов. Новые технологии подогрева грунта выполняют функции контроля и поддержания температуры грунта. Для эффективного обогрева плодородного грунта специалисты рекомендуют использовать мощность не более 100 Вт на 1м² и укладывать кабель с шагом 14-15 см.

Система отопления для таких теплиц в большинстве случаев представлена инфракрасными обогревателями потолочного типа. Для подсветки используют светодиодные светильники, которые обладают преимуществами люминесцентных и натриевых ламп. Излучение светодиода определяется составом люминофора, светоотдача современных систем способна достигнуть отметки 130-150 лм/Вт. При сборке светодиодного светильника в него закладывают светодиоды различного спектра, что позволяет обеспечить необходимый спектральный состав светового потока, сохраняя высокую светоотдачу. Благодаря избирательной подсветке растений уменьшаются затраты на электроэнергию, и повышается эффективность воздействия света.

Новые технологии в проветривании теплицы основаны на системе, включающей термодатчик и привод. При достижении определенной температуры датчик дает команду приводу, который открывает окна.

Автоматика для теплиц

Основное назначение системы автоматизации выращивания растений состоит в том, чтобы обеспечить все условия для развития без участия или с минимальным участием человека. Основные функции автоматики следующие:

  • Система проветривания и поддержания нормальной температуры внутри, в зависимости от наружной температуры воздуха.
  • Автоматический капельный полив и подкормка.
  • Система подогрева воздуха в холодное время года.

Для нормального развития растений в темное время необходимо дополнительное освещение, которое также включается с помощью системы автоматики.

Автоматика для проветривания

Автоматическая система для проветривания может быть двух типов, но основным элементом является небольшой гидроцилиндр, который открывает фрамуги для проветривания. Один из способов довольно простой, для открытия используется гидроцилиндр, полость которого наполнена специальной жидкостью.

При повышении температуры жидкость расширяется и выдвигает поршень, который и открывает фрамугу. При снижении температуры жидкость сжимается, и под действием пружины поршень возвращается, закрывая окно. Рис. 8 Устройство автоматического проветривания

Другой способ более точный и сложный, с установкой контактного термометра и сложного механизма открытия и закрытия фрамуги. Это позволяет более точно регулировать температуру, но требует немалых затрат на установку.

Системы капельного полива

При капельном поливе вода поступает к корням растений небольшими порциями, успевая при этом немножко прогреться. При этом почва все время остается влажной, что благоприятно сказывается на росте. Рис. 9 Капельный полив

Для автоматического полива используют шланги с капиллярными отверстиями, через которые вода капает к корневой системе.  Емкость для воды можно устанавливать внутри теплицы или снаружи. В резервуар вода подается из водопровода, контроль уровня и пополнение при расходе осуществляется с помощью поплавкового затвора.

Из резервуара вода поступает к капиллярным трубкам через кран с дистанционным управлением. Он может открываться с помощью автоматики либо в определенное заданное время, или при изменении уровня влажности в теплице. Систему полива можно использовать и для подкормки, добавляя в резервуар жидкое удобрение.

Автоматика для обогрева почвы и воздуха

Если теплица используется в холодное время года, то для созревания овощей необходим обогрев. Для обогрева применяют несколько способов:

  • установка электрических тепловых пушек, калориферов и обогревателей;
  • прокладка системы теплый пол, с подключением к котлу или электричеству;
  • установка котла, газового или электрического с радиаторами по периметру теплицы.

Рис. 10 Схема обогрева теплицы

Система автоматики должна включать отопление при понижении температуры и выключаться при достижении оптимального уровня.

Приборы освещения

Недостаток света сказывается на развитии овощей, поэтому необходимо в теплице устанавливать освещение для продления светового дня осенью и в зимнее время. Продолжительность светового дня должна быть в пределах 12-16 часов в сутки.

Для освещения используют следующие типы ламп:

  • накаливания, создает инфракрасное излучение и при близком расположении от растений может их обжечь;
  • натриевая, самая эффективная для роста растений, но имеет малый срок эксплуатации;
  • светодиодная, самая широко применяемая лампа для освещения, дает яркий свет, приближенный к солнечному;
  • люминесцентная, обладает ярким светом и длительным сроком службы.

Рис.11 Светильники для освещения

Кроме того, для освещения используют ультрафиолетовые и инфракрасные лампы. Причем инфракрасная лампа может не только освещать, но и обогревать теплицу. Ну а автоматизировать процесс включения света не сложно, достаточно установить датчики освещенности, или таймеры. Таймеры будут включать и выключать свет в определенное заданное время. 

Суть теплиц с автоматикой

Для оптимального развития и выращивания овощных культур необходимо внутри помещения создавать свой микроклимат, контролировать температуру и влажность воздуха. Чрезмерное повышение температуры может погубить растения, а при слишком холодном воздухе они будут плохо расти и развиваться.

Следить за всем этим и создавать необходимый режим для растений очень сложно, даже если владелец участка постоянно живет на даче. На помощь приходит автоматическая система ухода за растениями, которая выполнит за вас все заботы по выращиванию овощей. Система вовремя польет грядки, сделает вентиляцию и установит нужную заданную температуру, и даже выполнит подкормку растений.

Выгоды использования умных теплиц

Многие дачники хотят выращивать овощи в теплице, но не могут постоянно находиться на даче, появляются там раз в несколько дней. Решается это проблема просто: надо на участке установить умную теплицу. Умная теплица с установленной автоматикой для теплиц полностью освободит пользователя от необходимости заниматься текущими работами.
Рис. 7 Умная теплица

Для небольших теплиц нет необходимости полностью автоматизировать все процессы. Это будет дорого, да и не рентабельно. Для автоматизации достаточно тех простых систем контроля и исполнения, которые вы можете установить самостоятельно. Зато как приятно, когда на столе у вас будут присутствовать свежие, экологически чистые овощи, выращенные своими руками.

Модуль LCD 128×64 на базе контроллера ST7920

В текущей версии используется LCD-экран 128х64 на базе контроллера ST7920, подключенный в режиме последовательного соединения. Подробности подключения – в файле Globals.h.
Если вам не нужно использование этого модуля – закомментируйте USE_LCD_MODULE в файле Globals.h.

Внимание! Для того, чтобы использовать указанный экран – необходимо установить библиотеку U8GLib (есть в архиве проекта) в среду Arduino IDE!

Экран работает совместно с энкодером и тактовой кнопкой (подробности подключения – в Globals.h). Энкодером перелистываются закладки, затем кнопкой – производится переход внутрь выбранной закладки и пролистывание вариантов настроек. На экране ожидания нажатия кнопки пролистывают показания с датчиков, не дожидаясь времени их программного пролистывания. На экране ожидания можно вывести информацию со сколь угодно большого количества датчиков (настраивается в Globals.h).

Организация автоматического проветривания

Для этого нужно приспособить к каждой форточке гидроцилиндр. Принцип работы его таков: повышение температуры вызывает нагревание жидкости внутри цилиндра, она расширяется и двигает шток, поднимающий вверх форточку. И наоборот – понижение температуры вызывает охлаждение жидкости в цилиндре, она сжимается и шток под действием веса форточки заходит обратно в цилиндр, вследствие чего рама прикрывается.

Такой гидравлический автомат весит около 3 кг при усилии на штоке около 100 кг. Этого вполне хватает для открывания стеклянной рамы площадью около 2 м2 или рамы из пленки (поликарбоната) около 5 м2. То есть можно проветривать теплицу, имеющую площадь в 10– 20 м2. Более крупные парники следует оборудовать несколькими такими фрамугами. Стоимость получается вполне приемлемая с учетом срока службы гидроавтомата не менее 15–20 лет.

Вентиляция и отопление

Отопление и вентиляция — это “фундаментальные” параметры, которые нужно учитывать при строительстве теплицы. Именно они создают и поддерживают благоприятный для растений микроклимат.

Сехема водяного отпления теплицы

Вентиляция в теплицах используется в основном верхняя и боковая. Боковая представляет собой вентиляционные отверстия, установленные по периметру теплицы. Верхняя осуществляется с помощью подъема фрамуги.

Разумно использовать комбинированный тип вентиляции. Существуют разнообразные новые технологии, которые совершенствуют вентиляционную систему. Например, вы можете установить автомат проветривания теплицы. Он открывает и закрывает форточки, в зависимости от изменения температуры в помещении. Работает без электроэнергии и батареек, достаточно просто монтируется, благодаря чему вы сможете установить его самостоятельно.

Популярный вид отопления теплицы — водяное отопление. Проводя водяное отопление в теплицу, вы должны помнить о том, что растениям нужен как надпочвенный, так и подпочвенный обогрев. При этом надпочвенные тепловые приборы не должны нагреваться до температуры выше 95º С, а подпочвенные — 40º С. При отоплении теплиц разумно использовать и более новые технологии. Например, воздушный обогрев, при котором теплый воздух распределяется равномерно по всей площади. Это очень удобно, если грядки большого размера. Подобные технологии позволяют поставлять к растениям с потоками воздуха углекислый газ, который очень для них важен. Кроме того, уменьшается перепад температур и создается давление, оптимальное для того, чтобы насекомые-вредители не проникали в теплицу.

Новые технологии помогают контролировать все изменения микроклимата и стабилизировать его, независимо от погодных условий. Например, современные системы климат-контроля дадут вам возможность управлять температурой, влажностью и вентиляцией с помощью компьютерных технологий, а интеллектуальные алгоритмы самостоятельно будут контролировать экономное распределение всех ресурсов.

Температура воздуха

Если в теплице будет расти помидоры и огурцы, то параметры окружающей среды для этих культур схожи. Помидоры хорошо себя чувствуют при температуре воздуха от +18 до +25°С днем и не ниже +16°С ночью. Температура почвы от +10°С и выше. Для цветения и плодоношения температуру можно немного увеличить, чтобы плоды созревали быстрее и были больше. В ночное время вещества из листьев уходят к плодам. Если температуру увеличить то плод будет активнее наливаться. Если температура в нижних пределах, то это способствует росту побегов и корней – для продолжительного плодоношения.

Для поддержания нужной температуры в теплице надо учесть сезонные колебания температуры в той местности, где находится теплица. Если это южная часть России, то можно сосредоточится на автоматическом понижении температуры, а если северная часть России то придется позаботится еще и о нагревателях.

Итак начну о способах понижения температуры в теплице. Самое простой способ понизить температуру в теплице это создать проветривание. Для проветривания используются “актуаторы”, которые открывают форточки при повышении температуры.

Существуют автономные “масляные проветриватели” – суть их работы простая, при повышении температуры воздуха гидравлическое масло расширяется и толкает шток, тем самым форточка открывается. При понижении температуры закрывается без какой либо автоматики. Но есть и проблемы с ними, первая проблема – если температура воздуха повышена и внезапно пролетает циклон с повышением ветра, форточка может просто не успеть закрыться и ее может оторвать сильными потоками ветра. Ну и вторая проблема – это протекание цилиндров, но это можно вовремя заметить.

Актуаторы для теплиц

Я все же решил сделать проветривание более интеллектуальным. В магазинах продаются линейные актуаторы, которыми можно открывать и закрыть форточки по заданным условиям. Т.к. автоматика всегда работает, то проветриваени можно подключить к общей системе, т.к. актуатор стоит не дороже гидроцилиндра а возможностей намного больше. В сочетании с датчиком ветра , датчик атмосферного давления и датчик температуры можно расширить возможности своей теплицы. К примеру датчик атмосферного давления может следить за перепадами давления, ведь давно уже известно при быстром падении атмосферного давления с больше вероятность может пройти сильный ветер, а уже датчик скорости ветра точно покажет что надо бы закрыть все форточки.

Что такое умная теплица?

Понятие «умная теплица» подразумевает выполнение парниковой конструкцией следующих функций:

  • поддержание необходимого температурного режима за счет систем автоматического проветривания;
  • автоматизированный полив – капельное орошение;
  • независимое восстановление почвы путем мульчирования.

Умные теплицы можно условно разделить на два типа:

  • энергозависимые – все системы работают от электросети;
  • автономные – автоматика функционирует, используя солнечную и тепловую энергию.

И те, и другие теплицы имеют свои недостатки. При использовании электросети для обеспечения работы автоматических систем об экономии можно забыть. К тому же, если произойдет отключение электроэнергии, для растений в теплице это может закончиться плачевно. Второй вид умных теплиц не совсем удобен тем, что автоматика не способна реагировать быстро. Это касается резких перепадов температуры окружающего воздуха – форточка не успеет вовремя закрыться, и растения могут погибнуть.

В книге Н. Курдюмова и К. Малышевского «Умная теплица» даны полезные советы и подробное описание процесса создания автоматизированного парника. Умная теплица Курдюмова может быть возведена и обустроена без особого труда рядовым дачником.

АСУ теплицы в Республике Башкортостан

Один из объектов, который был автоматизирован компанией «СИН-Автоматика», находится в Республике Башкортостан, недалеко от г. Туймазы. Теплица с круглогодичным циклом выращивания размером 1601006,5 м занимает 1,6 га. Теплица оборудована 21 форточкой (длиной 70 м) с электроприводом. Для рециркуляции воздуха применяются 36 вентиляторов. Функциональная схема управления представлена на рисунке.

Рисунок. Функциональная схема управления тепличным оборудованием

Для поддержания температуры в холодное время теплица оснащена двумя котлами по 2,5 МВт. Тепло, вырабатываемое котлами, распределяется по 16 контурам отопления. На случай аварийной остановки котла предусмотрено резервное отопление 28 воздушными теплогенераторами FARM200.

Теплица покрыта двумя слоями качественной светостабилизированной пленки. Для улучшения тепловых характеристик и повышения снеговой и ветровой устойчивости в межпленочное пространство с помощью 21 насоса наддува, разделенных на две группы, закачивается теплый воздух. Для досветки растений установлены 44 группы светильников: 3900 шт. мощностью по 600 Вт.

Для управления инженерным оборудованием укомплектованы, смонтированы и запущены в эксплуатацию два щита с панельными контроллерами ОВЕН СПК107. Контроллер ведет архив, который можно перенести на флешку для удобной работы с данными.

Систему автоматики составляет оборудование ОВЕН:

  • 14 модулей дискретного ввода МВ110;
  • 6 модулей дискретного вывода МУ110;
  • 1 модуль аналогового ввода МВ110;
  • 4 блока питания БП120Б;
  • 21 датчик влажности и температуры воздуха ПВТ10;
  • 5 датчиков концентрации углекислого газа ПКГ100-НСО2.

В большом количестве используется электротехническое оборудование MEYERTEC. В общей сложности каждый щит насчитывает 224 дискретных входа и 96 дискретных выходов типа реле. Входы и выходы системы сформированы модулями ввода/вывода Mx110. Кроме того, на базе модуля МВ110 собрана метеостанция с комплектом датчиков температуры, влажности, скорости и направления ветра, освещенности и осадков с выходным сигналом 4–20 мА. Система получает данные со внешней метеостанции, что позволяет предотвратить повреждение форточек от ветра и попадание осадков внутрь теплицы. В теплице установлены датчики влажности и температуры ПВТ10 и концентрации углекислого газа ПКГ100-Н4.СО2.

Система управления теплицей может работать как в ручном, так и в автоматическом режимах. Система подключена к сервису OwenCloud для удаленной корректировки параметров. Данные хранятся на сервисе OwenCloud три месяца.

Помимо основной задачи (поддержания оптимального микроклимата), система управления обеспечивает контроль возможных нештатных ситуаций и неисправностей оборудования, в том числе отключения питания, отключения автоматов защиты, срабатывания тепловых реле, выхода температуры за допустимые пределы, потери связи с датчиками или модулями и др. Получив аварийный сигнал, система оперативно оповещает персонал о нештатных ситуациях на объекте. Уведомление об аварийных ситуациях дублируется по нескольким каналам: аварийная сирена в самой теплице с выводом информации на панель оператора, рассылка уведомлений на электронные адреса ответственных работников, вывод информации на компьютер оператора. Своевременное извещение о нештатной ситуации позволяет вовремя принять меры и избежать выхода из строя оборудования, гибели урожая, а следовательно, и потерь бизнеса.

Организация автоматического проветривания

https://youtube.com/watch?v=As4KDepdO2I

Чтобы перевести проветривание в теплице на автоматический режим, нужно установить на форточки несложные гидравлические устройства. Они продаются в готовом виде, однако такую систему можно соорудить своими руками из имеющихся на участке материалов.

Две емкости частично заполняются жидкостью и соединяются шлангом. Одна из емкостей будет находиться внутри парника, другая – снаружи. Когда температура в теплице достигнет критической точки, жидкость расширится и под давлением перетечет в наружную емкость. Масса наружной емкости увеличится, сработает принцип рычага, и форточка откроется. Когда жидкость во внутренней емкости остынет, произойдет обратный процесс.

https://youtube.com/watch?v=u4LGV7kAHf0

Главная цель проветривания – понизить температуру воздуха в теплице. Теплый воздух поднимается вверх – именно здесь и необходимо обустраивать форточки. Между прохладными воздушными массами извне и теплыми внутренними потоками происходит эффективный теплообмен, так микроклимат в теплице приближается к идеальному.

Расположение систем проветривания в нижней части парника приведет к образованию сквозняков. Поэтому не рекомендуется использовать для охлаждения воздуха тепличные двери, даже если температура на улице довольно высокая.

Еще одно предостережение – форточки на крыше теплицы при сильных порывах ветра могут сыграть роль паруса. Среди последствий – выход из строя механизма автоматического проветривания, деформация каркаса теплицы, полное разрушение парникового сооружения. Чтобы избежать подобных недоразумений, устанавливайте теплицу на надежный фундамент и располагайте в наиболее безветренном месте. Для защиты от ветра можно использовать живую изгородь.

Автоматический полив в теплицах – виды и конструкция

Для начала имеет смысл узнать про разновидности автополива, их преимущества и недостатки. Эти данные собраны в небольшую таблицу, которую вы можете увидеть ниже.

Капельное орошение

Таблица. Виды систем автоматического орошения в теплицах.

НазваниеКак устроенаПреимуществаНедостатки
Капельное орошениеОт источника по магистральным трубам вода доставляется к специальным капельницам и лентам. С их помощью влага попадает в почву мелкими каплями к каждому отдельному растению.Не переувлажняет почву, отсутствуют привлекательные условия для сорняков, экономия воды – до 30% по сравнению с обычным поливом.Сложность и высокая цена системы, необходимость тщательно следить за чистотой воды, чтобы не допустить засорения капельных лент.
ДождеваниеОт источника вода попадает в разбрызгиватели, также называемые дождевателями. Они располагаются либо на уровне земли, либо под крышей теплицы. Вода распыляется в виде мелких капель и орошает почву на грядках.Возможность покрыть одним разбрызгивателем большую площадь.При такой системе автоматического полива существует риск переувлажнения микроклимата в теплице, а капли, попадающие на листья растений, могут привести к «солнечным ожогам».
Подземное орошениеПо своему устройству система подобна капельной, но трубы располагаются под землей, а вода доставляется непосредственно к корневым системам растений.Наиболее эффективная система снабжения растений водой. Дополнительно проводится аэрация почвы.Самая трудоемкая в обустройстве система автополива, необходимость производить выемку грунта в теплице.
Подземное орошение упрощенноеСильно упрощенный вариант предыдущей системы – к корневой системе растения вода доставляется из отверстий, проделанных в пластиковой бутылке, вкопанной рядом в землю.Самая дешевая в создании система автополива – при наличии достаточного количества пластиковых бутылок расходы на обустройство будут равны нулю.Полностью автоматической подобная система не является – существует необходимость один раз в несколько дней пополнять водой все вкопанные в грунт бутылки.

Дождевание прекрасно подходит для промышленных теплиц большой площади. Для уменьшения затрат на обустройство автополива применяют подвижную систему, перемещающуюся под крышей вдоль грядок Подземное капельное орошение

Теперь обратим внимание на конструкцию системы автополива в теплице. Вариант с использованием пластиковых бутылок будет рассмотрен в следующем разделе статьи вместе с инструкцией по созданию. Что касается остальных систем, то, за исключением непосредственно капельниц и разбрызгивателей, они включают в свою конструкцию одни и те же компоненты

Что касается остальных систем, то, за исключением непосредственно капельниц и разбрызгивателей, они включают в свою конструкцию одни и те же компоненты.

  1. Источник – это может быть скважина, колодец, водопровод или резервуар. По возможности, температура жидкости должна соответствовать таковой у воздуха – переохлаждение, вызванное поливом, вызывает у растений «стресс», который не лучшим образом сказывается на их здоровье и урожайности.
  2. Насос – при использовании в качестве источника бака, резервуара или скважины для создания необходимого давления в системе. В случае с водопроводом оно может быть непостоянным и превышать максимально безопасные для труб и капельных лент значения. В таком случае применяют редуктор давления воды.
  3. Фильтр – вне зависимости от источника воды, его наличие обязательно. В противном случае система автополива быстро выйдет из строя.
  4. Электромагнитные клапаны необходимы для открытия и закрытия подачи воды в систему. В отличие от обычных кранов, управляются не поворотом вентиля, а электрическими сигналами.
  5. Контроллер или таймер – электрические сигналы на клапан подаются с его помощью. Самая «умная» часть системы автополива. При необходимости ее дополняют датчиками.
  6. Распределительная магистраль – трубы, по которым вода доставляется к капельным лентам или дождевателям. В качестве материала используют сталь, металлопластик, ПВХ и т. д.

Пример самодельной системы автоматического капельного полива с питанием из бака

Каждый из компонентов, приведенных выше, по-своему важен, потому будет отдельно и более подробно рассмотрен далее.

Arduino »Выращивайте овощи с помощью умной теплицы MEG

Выращивайте овощи с помощью умной теплицы MEG

Зои Романо – 1 апреля 2014 г.

MEG – первое в мире социальное и автоматизированное сообщество теплиц, машин и деталей, теперь на Kickstarter. Карло Д’Алезио и Пьеро Санторо, дизайнерский дуэт из Милана, представили прототип на Maker Faire Rome, а также на мероприятии PopupMakers в прошлом году.

MEG означает микроэкспериментальную систему выращивания, работающую на Arduino MEGA 2560, которая управляет автоматизированным «световым двигателем», резервуаром для воды и питательных веществ, вентиляторами и датчиками, контролирующими влажность, температуру и pH.Это умно, потому что, если вы не очень разбираетесь в выращивании растений, вы можете использовать параметры краудсинга у других садоводов: помидоры вашего соседа не будут более красными, чем ваши!

В прошлую субботу в Милане отметили День Ардуино и тут же вместе с нами запустили кампанию, где я сделал пару снимков прототипа!

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий